Expanded and Activated TILs Kill Tumor Cells Enabling Immune Oncology (IO) Compound Assays

Paula Comune Pennacchi1, Paloma Navarro2, Verónica García Navas2, Arántzazu Barquin García2, Elena Sevillaño Fernández3, Sergio Ruiz Llorente1, Juan Francisco Rodriguez1, Mónica Yagüe1, Joan Ballesteros2, Daniel Primo1, Jesús García Donas2

1Vivia Biotech, Tres Cantos, Madrid, Spain; 2HM Hospitales – Centro Integral Oncológico HM Clara Campal, Madrid, Spain.

INTRODUCTION
The Tumor Microenvironment (TME) has a key role in Solid Tumor Therapy Screening. We have developed a 3D ex vivo immunosuppressive assay mimicking the TME. It enables both allogeneic & autologous tumor lysis by expanded Tumor Infiltrate Lymphocytes (TILs). It is a valuable 3D assay to study the activity of immune therapy drugs in patient sample.

OBJECTIVE
We aim to develop a robust in vitro platform to speed-up Immune Oncology Drug Screening able to reliably predict patient responses to Immune Therapy.

MATERIAL & METHODS
TME-aligned immunosuppressor media was produced by conditioned media from activated human Mesenchymal Stem Cells (hMSC). The TILs were expanded from patient-derived tumor samples and used for tumor killing potential evaluation. Target tumor cells were obtained from different sources: a) isolated from patient-derived material and frozen until use in experiments with autologous or allogenic TILs or b) from Tumor cell lines purchased from ATCC. The cells were mixed according to desired Effector:Target (E:T) ratios and embedded in 3D matrix in presence of TME-aligned media and immune therapy compounds, as Immune Checkpoint inhibitors (immChPi). The cell retention was performed at the end of desired timepoints and tumor cell killing and TILs activation profile were analysed by flow cytometry. Informed consent for study participation and approval by the ethical committees were obtained.

RESULTS

Figure 1. The flexible 3D IO TME-Aligned Assay can be performed using Tumor Cell Lines or Patient Tumor Cells, the effector Cells can be Healthy T-Cells or Autologous TILs. The exclusive Activated hMSC derived media combined with an Immunostimulatory TME provides naïve-like conditions as Acidic pH & Low glucose, mimicking native TME. Final endpoint cells retrieval allow full Mode of Action description.

Figure 2. T-Cells activation marker CD69 expression is partially inhibited in TME-Related model in presence of bispecific antibodies (BsAb) compared with conventional culture methods.

Figure 3. Up right: Anti-PD-1 antibody enhances healthy T-Cells activation, driven by BsAb therapy. Bottom right: T-Cells activation reflects on increased allogenic tumor cells killing.

Figure 4. Upon BsAbs therapy, an increased patient-derived ovarian tumor killing (Red, left Y-scale) healthy T-Cells activation (Dark Green, Right Y-scale), Trogocytic T-Cells detection (Light Green, Right Y-scale) and doublets Tumor-T-Cells population (Blue, Right Y-scale) is observed.

CONCLUSIONS
The Novel TME-Aligned 3D IO Assay is a reliable, and powerful tool to study the mode of action of tumor cells lysis by healthy T-Cells or expanded TILs. Immune Therapy Drugs Screening can be performed in autologous or allogenic models and using different E:T ratios, allowing full mode of action description of Bi or Multispecific antibodies, ImmChPi and others, and opens a new door for therapy prediction studies in patient’s material.

CONTACT INFORMATION
Joan Ballesteros, CSO Vivia Biotech
jballesteros@viviabiotech.com

www.viviabiotech.com